45. Организм как биологическая система Читать 0 мин.
45.75. Генетика. Основные понятия и законы
Генетика — наука о закономерностях наследственности и изменчивости организмов. Наследственность и изменчивость – два противоположных свойства живых организмов, неразрывно связанные между собой. Благодаря наследственности сохраняется однородность, единство вида, а изменчивость делает вид неоднородным, создаёт предпосылки для дальнейшего видообразования. Основоположник генетики – чешский учёный Грегор Мендель, опубликовавший в 1865 г. труд «Опыты над растительными гибридами». Однако датой рождения генетики как науки является 1900 год, когда Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии независимо друг от друга «переоткрыли» законы наследования признаков, установленные Г. Менделем еще в 1865 году. Генетика – фундаментальная наука, изучающая процесс преемственности жизни на молекулярном, клеточном, организменном и популяционном уровнях. Современная генетика является научной основой для селекции, медицины, генной инженерии, основой для понимания теории эволюции.
Наследственность — свойство организмов передавать свои признаки от одного поколения к другому.
Изменчивость — свойство организмов приобретать новые по сравнению с родителями признаки. В широком смысле под изменчивостью понимают различия между особями одного вида.
Хромосомы
Хромосомы – нуклеопротеидные структуры в ядре эукариотической клетки, в которых сосредоточена большая часть наследственной информации и которые предназначены для её хранения, реализации и передачи. Хромосома эукариот образуется из единственной и чрезвычайно длинной молекулы ДНК, которая содержит линейную группу множества генов. Хромосомы прокариот — это ДНК-содержащие структуры в клетке без ядра.
Хромосома – это наиболее компактная форма наследственного материала клетки (по сравнению с нитью ДНК укорочение составляет примерно 1600 раз). У большинства эукариот ДНК скручивается до такой степени только на время деления. Хромосома может быть одинарной (из одной хроматиды) и двойной (из двух хроматид). Хроматида – это нуклеопротеидная нить, половинка двойной хромосомы.
У каждой хромосомы есть центромера (первичная перетяжка). Центромера – это место соединения двух хроматид, к центромере присоединяются нити веретена деления. По сторонам от центромеры лежат плечи хромосомы. В зависимости от места расположения центромеры хромосомы делят на:
-
равноплечие (метацентрические),
-
неравноплечие (субметацентрические),
-
палочковидные (акроцентрические) – имеется только одно плечо.
Рисунок 1. Схема строения хромосомы в поздней профазе — метафазе митоза. 1 — хроматида; 2 —центромера; 3 — короткое плечо; 4 — длинное плечо.
Гомологичные хромосомы – пара хромосом приблизительно равной длины, с одинаковым положением центромеры и дающие одинаковую картину при окрашивании. Их гены в соответствующих (идентичных) локусах представляют собой аллельные гены — аллели, то есть кодируют одни и те же белки или РНК. При двуполом размножении одна гомологичная хромосома наследуется организмом от матери, а другая — от отца. Гомологичные хромосомы не идентичны друг другу. Они имеют один и тот же набор генов, однако они могут быть представлены как различными (у гетерозигот), так и одинаковыми (у гомозигот) аллелями, то есть формами одного и того же гена, ответственными за проявление различных вариантов одного и того же признака. Кроме того, в результате некоторых мутаций могут возникать гомологичные хромосомы, различающиеся наборами или расположением генов.
Хромосомы делятся на две группы: аутосомы и половые хромосомы. Аутосомы – парные хромосомы, одинаковые у мужских и женских организмов. Иными словами, кроме половых хромосом, все остальные хромосомы у раздельнополых организмов будут являться аутосомами. Половые хромосомы – хромосомы, набор которых отличает мужские и женские особи. По традиции половые хромосомы в отличие от аутосом, обозначаемых порядковыми номерами, обозначаются буквами X или Y. Отсутствие половой хромосомы обозначается цифрой 0. Пол, имеющий две одинаковые половые хромосомы, продуцирует гаметы, не отличающиеся по половым хромосомам. Этот пол называется гомогаметным. У пола, определяемого набором непарных половых хромосом, половина гамет несёт одну половую хромосому, а половина гамет — другую половую хромосому. Этот пол называется гетерогаметным. У человека, как у всех млекопитающих, гомогаметный пол — женский (XX), гетерогаметный пол — мужской (XY). У птиц, напротив, гетерогаметный пол — женский (ХУ), а гомогаметный — мужской (ХХ).
Кариотип – совокупность хромосом клеток какого-либо вида растений или животных. Он характеризуется постоянным для каждого вида числом хромосом, их размеров, формы, деталей строения. Кариотип любого вида специфичен и может являться его систематическим признаком.
Рисунок 2. Кариотип мужчины.
Гены, генотип и фенотип
Ген — функционально неделимая единица генетического материала, участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК. В широком смысле ген — участок ДНК, определяющий возможность развития отдельного элементарного признака.
Генотип — совокупность всех генов организма. Генотип – совокупность наследственных признаков и свойств, полученных особью от родителей, а также новых свойств, появившихся в результате мутаций генов, которых не было у родителей. Генотип складывается при взаимодействии двух геномов (яйцеклетки и сперматозоида) и представляет собой наследственную программу развития, являясь целостной системой, а не простой суммой отдельных генов.
Геном – совокупность генов в гаплоидном наборе хромосом данного организма. В геноме каждый ген представлен лишь одним геном из каждой аллельной пары (только доминантным или только рецессивным).
Аллель – пара генов, определяющая признак. Аллельные гены — гены, расположенные в идентичных локусах гомологичных хромосом. Локус — местоположение гена в хромосоме.
Гомозигота – организм, имеющий аллельные гены одной молекулярной формы (оба доминантные или оба рецессивные).
Гетерозигота – организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой — рецессивным.
Альтернативные признаки – два взаимоисключающих проявления признака (белая и пурпурная окраска цветов, жёлтая и зелёная окраска семян, гладкая и морщинистая поверхность семян, карие и голубые глаза).
Множественный аллелизм – это существование в популяции более двух аллелей данного гена. Например, наследование групп крови у человека определяется тремя аллелями одного гена: I0, IA, IB.
Рисунок 3. Определение групп крови
Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.
Доминантный ген — аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.
Чистая линия — группа организмов, имеющих некоторые признаки, которые полностью передаются потомству в силу генетической однородности всех особей. В случае гена, имеющего несколько аллелей, все организмы, относящиеся к одной чистой линии, являются гомозиготными по одному и тому же аллелю данного гена. Чистыми линиями часто называют сорта растений, при самоопылении дающих генетически идентичное и морфологически сходное потомство. Аналогом чистой линии у микроорганизмов является штамм. Чистые (инбредные) линии у животных с перекрестным оплодотворением получают путём близкородственных скрещиваний в течение нескольких поколений. В результате животные, составляющие чистую линию, получают одинаковые копии хромосом каждой из гомологичных пар.
Фенотип — совокупность всех признаков и свойств организма, сложившихся в процессе индивидуального развития генотипа. Сюда относятся не только внешние признаки, но и внутренние: анатомические, физиологические, биохимические. Каждая особь имеет свои особенности внешнего вида, внутреннего строения, характера обмена веществ, функционирования органов, т. е. свой фенотип, который сформировался в определённых условиях среды.
Виды взаимодействия генов
Доминирование – форма взаимоотношений между аллелями одного гена, при которой один из них (доминантный) подавляет (маскирует) проявление другого (рецессивного) и таким образом определяет проявление признака как у доминантных гомозигот, так и у гетерозигот.
При неполном доминировании гетерозиготы имеют фенотип, промежуточный между фенотипами доминантной и рецессивной гомозиготы. Например, при скрещивании чистых линий львиного зева и многих других видов цветковых растений с пурпурными и белыми цветками особи первого поколения имеют розовые цветки.
При кодоминировании у гетерозигот признаки, за которые отвечает каждый из аллелей, проявляются одновременно и в полной мере. Типичный пример кодоминирования — наследование групп крови системы АВ0 у человека. Всё потомство людей с генотипами АА (вторая группа) и ВВ (третья группа) будет иметь генотип АВ (четвертая группа). Их фенотип не является промежуточным между фенотипами родителей, так как на поверхности эритроцитов присутствуют оба агглютиногена (А и В). При кодоминировании назвать один из аллелей доминантным, а другой — рецессивным нельзя, эти понятия теряют смысл: оба аллеля в равной степени влияют на фенотип.
Правило определения количества гамет
Количество разновидностей гамет, которые даст организм, можно посчитать по следующей формуле. Количество гамет равно 2n, где n –количество пар разнородных хромосом, содержащих гетерозиготные гены. Например, тригетерозигота АаВbСс будет давать 8 типов гамет, если гены расположены в разных парах хромосом (n = 3) и только 2 типа, если гены находятся в одной паре (n = 1).
Методы генетики
Гибридологический метод
Основным является гибридологический метод — система скрещиваний, позволяющая проследить закономерности наследования признаков в ряду поколений. Впервые разработан и использован Г. Менделем. Отличительные особенности метода: 1) целенаправленный подбор родителей, различающихся по одной, двум, трем и т. д. парам контрастных (альтернативных) стабильных признаков; 2) строгий количественный учет наследования признаков у гибридов; 3) индивидуальная оценка потомства от каждого родителя в ряду поколений.
Скрещивание, при котором анализируется наследование одной пары альтернативных признаков, называется моногибридным, двух пар — дигибридным, нескольких пар —полигибридным.
Кроме гибридологического метода, в генетике используют и другие методы.
Генеалогический метод
Генеалогический метод — составление и анализ родословных. Его применяют для определения типа наследования, изучения сцепленного наследования, определения типа взаимодействия генов. Данный метод позволяет сделать прогноз вероятности проявления изучаемого признака в потомстве и используется в медико-генетическом консультировании.
Популяционно-статистический метод
Популяционно-статистический метод — изучение частот различных генов и генотипов в человеческих популяциях. Метод позволяет вычислить частоту встречаемости наследственных признаков, в т. ч. болезней, в различных местностях, среди разных рас и народностей, степень гетерозиготности и полиморфизма. Кроме того, метод позволяет установить особенности взаимодействия факторов, влияющих на распределение наследственных признаков, что позволяет определить адаптивную ценность конкретных генотипов.
Близнецовый метод
Близнецовый метод — изучение близнецов, сравнение частоты сходства по ряду признаков пар одно- и разнояйцевых близнецов. Близнецовый метод позволяет определить роль наследственности и среды в развитии различных признаков. Метод позволяет оценить роль генетического вклада, влияние воспитания и обучения в развитие сложных признаков.
Цитогенетический метод
Цитогенетический метод — изучение строения и морфологических особенностей метафазных хромосом. Цитогенетический метод используется в медико-генетическом консультировании: для изучения нормального кариотипа, для точной диагностики наследственных заболеваний, вызываемых хромосомными мутациями, для определения последствий воздействия мутагенов.
Генетическая символика
Предложена Г. Менделем, используется для записи результатов скрещиваний:
Р — родители;
F — потомство, число внизу или сразу после буквы указывает на порядковый номер поколения (F1— гибриды первого поколения — прямые потомки родителей, F2 — гибриды второго поколения — возникают в результате скрещивания между собой гибридов F1);
× — значок скрещивания;
G — гаметы;
A — доминантный ген,
а — рецессивный ген;
АА — гомозигота по доминанте,
аа — гомозигота по рецессиву,
Аа — гетерозигота.
Закон единообразия гибридов первого поколения, или первый закон Менделя
Успеху работы Менделя способствовал удачный выбор объекта для проведения скрещиваний — различные сорта гороха.
Особенности гороха:
1) относительно просто выращивается и имеет короткий период развития;
2) имеет многочисленное потомство;
3) имеет большое количество хорошо заметных альтернативных признаков (окраска венчика — белая или красная; окраска семядолей — зеленая или желтая; форма семени — морщинистая или гладкая; окраска боба — желтая или зеленая; форма боба — округлая или с перетяжками; расположение цветков или плодов — по всей длине стебля или у его верхушки; высота стебля — длинный или короткий);
4) является самоопылителем, в результате чего имеет большое количество чистых линий, устойчиво сохраняющих свои признаки из поколения в поколение.
Опыты по скрещиванию разных сортов гороха Мендель проводил в течение восьми лет, начиная с 1854 года. 8 февраля 1865 года Г. Мендель выступил на заседании Брюннского общества естествоиспытателей с докладом «Опыты над растительными гибридами», где были обобщены результаты его работы.
Опыты Менделя были тщательно продуманы. Если его предшественники пытались изучить закономерности наследования сразу многих признаков, то Мендель свои исследования начал с изучения наследования всего лишь одной пары альтернативных признаков.
Мендель взял сорта гороха с желтыми и зелеными семенами и произвел их искусственное перекрестное опыление: у одного сорта удалил тычинки и опылил их пыльцой другого сорта. Гибриды первого поколения имели желтые семена. Аналогичная картина наблюдалась и при скрещиваниях, в которых изучалось наследование других признаков: при скрещивании растений, имеющих гладкую и морщинистую формы семян, все семена полученных гибридов были гладкими, от скрещивания красноцветковых растений с белоцветковыми все полученные — красноцветковые. Мендель пришел к выводу, что у гибридов первого поколения из каждой пары альтернативных признаков проявляется только один, а второй как бы исчезает. Проявляющийся у гибридов первого поколения признак Мендель назвал доминантным, а подавляемый — рецессивным.
Первый закон Менделя:
При моногибридном скрещивании гомозиготных особей, имеющих разные значения альтернативных признаков, гибриды являются единообразными по генотипу и фенотипу.
Генетическая схема закона единообразия Менделя (первый закон Менделя) (А — желтый цвет горошин, а — зеленый цвет горошин):
Закон расщепления, или второй закон Менделя
Г. Мендель дал возможность самоопылиться гибридам первого поколения. У полученных таким образом гибридов второго поколения проявился не только доминантный, но и рецессивный признак. Анализ данных таблицы позволил сделать следующие выводы:
-
единообразия гибридов во втором поколении не наблюдается: часть гибридов несет один (доминантный), часть — другой (рецессивный) признак из альтернативной пары;
-
количество гибридов, несущих доминантный признак, приблизительно в три раза больше, чем гибридов, несущих рецессивный признак;
-
рецессивный признак у гибридов первого поколения не исчезает, а лишь подавляется и проявляется во втором гибридном поколении.
Явление, при котором часть гибридов второго поколения несет доминантный признак, а часть — рецессивный, называют расщеплением. Причем, наблюдающееся у гибридов расщепление не случайное, а подчиняется определенным количественным закономерностям. На основе этого Мендель сделал еще один вывод: при скрещивании гибридов первого поколения в потомстве происходит расщепление признаков в определенном числовом соотношении.
Второй закон Менделя:
При моногибридном скрещивании гетерозиготных особей у гибридов имеет место расщепление по фенотипу в отношении 3:1, по генотипу 1:2:1.
Генетическая схема закона расщепления Менделя (А — желтый цвет горошин, а — зеленый цвет горошин):
Закон чистоты гамет
С 1854 года в течение восьми лет Мендель проводил опыты по скрещиванию растений гороха. Им было выявлено, что в результате скрещивания различных сортов гороха друг с другом гибриды первого поколения обладают одинаковым фенотипом, а у гибридов второго поколения имеет место расщепление признаков в определенных соотношениях. Для объяснения этого явления Мендель сделал ряд предположений, которые получили название «гипотезы чистоты гамет», или «закона чистоты гамет». Мендель предположил, что:
-
за формирование признаков отвечают какие-то дискретные наследственные факторы;
-
организмы содержат два фактора, определяющих развитие признака;
-
при образовании гамет в каждую из них попадает только один из пары факторов;
-
при слиянии мужской и женской гамет эти наследственные факторы не смешиваются (остаются чистыми).
В 1909 году В. Иогансен назовет эти наследственные факторы генами, а в 1912 году Т. Морган покажет, что они находятся в хромосомах.
Для доказательства своих предположений Г. Мендель использовал скрещивание, которое сейчас называют анализирующим (анализирующее скрещивание — скрещивание организма, имеющего неизвестный генотип, с организмом, гомозиготным по рецессиву). Наверное, Мендель рассуждал следующим образом: «Если мои предположения верны, то в результате скрещивания F1 с сортом, обладающим рецессивным признаком (зелеными горошинами), среди гибридов будут половина горошин зеленого цвета и половина горошин — желтого».
Как видно из приведенной ниже генетической схемы, он действительно получил расщепление 1:1 и убедился в правильности своих предположений и выводов, но современниками он понят не был. Его доклад «Опыты над растительными гибридами», сделанный на заседании Брюннского общества естествоиспытателей, был встречен полным молчанием.
Цитологические основы первого и второго законов Менделя
Во времена Менделя строение и развитие половых клеток не было изучено, поэтому его гипотеза чистоты гамет является примером гениального предвидения, которое позже нашло научное подтверждение.
Явления доминирования и расщепления признаков, наблюдавшиеся Менделем, в настоящее время объясняются парностью хромосом, расхождением хромосом во время мейоза и объединением их во время оплодотворения. Обозначим ген, определяющий желтую окраску, буквой А, а зеленую — а. Поскольку Мендель работал с чистыми линиями, оба скрещиваемых организма — гомозиготны, то есть несут два одинаковых аллеля гена окраски семян (соответственно, АА и аа). Во время мейоза число хромосом уменьшается в два раза, и в каждую гамету попадает только одна хромосома из пары. Так как гомологичные хромосомы несут одинаковые аллели, все гаметы одного организмы будут содержать хромосому с геном А, а другого — с геном а.
При оплодотворении мужская и женская гаметы сливаются, и их хромосомы объединяются в одной зиготе. Получившийся от скрещивания гибрид становится гетерозиготным, так как его клетки будут иметь генотип Аа; один вариант генотипа даст один вариант фенотипа — желтый цвет горошин.
У гибридного организма, имеющего генотип Аа во время мейоза, хромосомы расходятся в разные клетки и образуется два типа гамет — половина гамет будет нести ген А, другая половина — ген а. Оплодотворение — процесс случайный и равновероятный, то есть любой сперматозоид может оплодотворить любую яйцеклетку. Поскольку образовалось два типа сперматозоидов и два типа яйцеклеток, возможно возникновение четырех вариантов зигот. Половина из них — гетерозиготы (несут гены А и а), 1/4 — гомозиготы по доминантному признаку (несут два гена А) и 1/4 — гомозиготы по рецессивному признаку (несут два гена а). Гомозиготы по доминанте и гетерозиготы дадут горошины желтого цвета (3/4), гомозиготы по рецессиву — зеленого (1/4).
Закон независимого комбинирования (наследования) признаков, или третий закон Менделя
Организмы отличаются друг от друга по многим признакам. Поэтому, установив закономерности наследования одной пары признаков, Г. Мендель перешел к изучению наследования двух (и более) пар альтернативных признаков. Для дигибридного скрещивания Мендель брал гомозиготные растения гороха, отличающиеся по окраске семян (желтые и зеленые) и форме семян (гладкие и морщинистые). Желтая окраска (А) и гладкая форма (В) семян — доминантные признаки, зеленая окраска (а) и морщинистая форма (b) — рецессивные признаки.
Скрещивая растение с желтыми и гладкими семенами с растением с зелеными и морщинистыми семенами, Мендель получил единообразное гибридное поколение F1 с желтыми и гладкими семенами. От самоопыления 15-ти гибридов первого поколения было получено 556 семян, из них 315 желтых гладких, 101 желтое морщинистое, 108 зеленых гладких и 32 зеленых морщинистых (расщепление 9:3:3:1).
Анализируя полученное потомство, Мендель обратил внимание на то, что:
1) наряду с сочетаниями признаков исходных сортов (желтые гладкие и зеленые морщинистые семена), при дигибридном скрещивании появляются и новые сочетания признаков (желтые морщинистые и зеленые гладкие семена);
2) расщепление по каждому отдельно взятому признаку соответствует расщеплению при моногибридном скрещивании.
Из 556 семян 423 были гладкими и 133 морщинистыми (соотношение 3:1), 416 семян имели желтую окраску, а 140 — зеленую (соотношение 3:1). Мендель пришел к выводу, что расщепление по одной паре признаков не связано с расщеплением по другой паре. Для семян гибридов характерны не только сочетания признаков родительских растений (желтые гладкие семена и зеленые морщинистые семена), но и возникновение новых комбинаций признаков (желтые морщинистые семена и зеленые гладкие семена).
Третий закон Менделя:
При дигибридном скрещивании дигетерозигот у гибридов имеет место расщепление по фенотипу в отношении 9:3:3:1, по генотипу в отношении 4:2:2:2:2:1:1:1:1, признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях.
Генетическая схема закона независимого комбинирования признаков (третьего закона Менделя):
Анализ результатов скрещивания по фенотипу:
* желтые, гладкие — 9/16,
* желтые, морщинистые — 3/16,
* зеленые, гладкие — 3/16,
* зеленые, морщинистые — 1/16.
Расщепление по фенотипу 9:3:3:1.
Анализ результатов скрещивания по генотипу:
* AaBb — 4/16, * AABb — 2/16,
* AaBB — 2/16, * aaBb — 2/16,
* ААBB — 1/16, * Aabb — 2/16,
* ААbb — 1/16,* aaBB — 1/16,
* aabb — 1/16.
Расщепление по генотипу 4:2:2:2:2:1:1:1:1.
Третий закон Менделя справедлив только для тех случаев, когда гены анализируемых признаков находятся в разных парах гомологичных хромосом.
Цитологические основы третьего закона Менделя
Пусть А — ген, обусловливающий развитие желтой окраски семян, а — зеленой окраски, В — гладкая форма семени, b — морщинистая. Скрещиваются гибриды первого поколения, имеющие генотип АаВb. При образовании гамет из каждой пары аллельных генов в гамету попадает только один, при этом в результате случайного расхождения хромосом в первом делении мейоза ген А может попасть в одну гамету с геном В или с геном b, а ген а — с геном В или с геном b. Таким образом, каждый организм образует четыре сорта гамет в одинаковом количестве (по 25%): АВ,Ab, aB, ab. Во время оплодотворения каждый из четырех типов сперматозоидов может оплодотворить любую из четырех типов яйцеклеток. В результате оплодотворения возможно появление девяти генотипических классов, которые дадут четыре фенотипических класса.
Сцепленное наследование генов
Мендель изучил наследование только семи пар признаков у душистого горошка. Его законы подтвердились на самых разных видах организмов, т. е. было признано, что эти законы носят всеобщий характер. Однако позже было замечено, что у душистого горошка два признака — форма пыльцы и окраска цветков — не дают независимого распределения в потомстве. Потомки оставались похожими на родителей. Постепенно таких исключений из третьего закона Менделя накапливалось все больше. Стало ясно, что принцип независимого распределения в потомстве и свободного комбинирования распространяется не на все гены. Действительно, у любого организма признаков очень много, а число хромосом невелико.
Число генов у каждого организма значительно превышает число хромосом. Следовательно, в каждой хромосоме должно находиться много генов. Каковы же закономерности наследования генов, локализованных в одной хромосоме? Этот вопрос был изучен американским генетиком Т. Морганом и его учениками.
Предположим, что два гена - А и В - находятся в одной хромосоме и организм, взятый для скрещивания, гетерозиготен по этим генам. В анафазе мейоза I гомологичные хромосомы расходятся в разные клетки и образуется два сорта гамет - АВ и ab (вместо четырех, как это должно быть при дигибридном скрещивании), которые повторяют комбинацию генов в хромосоме родителя. Такое отклонение от независимого распределения означает, что гены, локализованные в одной хромосоме, наследуются совместно, или сцепленно (закон Томаса Моргана или закон сцепленного наследования признаков).
Группы генов, расположенных в одной хромосоме, составляют группу сцепления. Сцепленные гены расположены в хромосомах в линейном порядке. Число групп сцепления соответствует числу пар хромосом, т.е. гаплоидному набору. Так, у человека 46 хромосом - 23 группы сцепления, у дрозофилы 8 хромосом - 4 группы сцепления.
Однако при анализе наследования сцепленных генов было установлено, что сцепление не бывает абсолютным, может нарушаться, в результате чего возникают новые гаметы и аВ Аb с новыми комбинациями генов, отличающимися от родительской гаметы. Причина нарушения сцепления и возникновения новых гамет - кроссинговер - перекрест хромосом в профазе мейоза I. Перекрест и обмен участками гомологичных хромосом приводит к возникновению качественно новых хромосом и, следовательно, к постоянной "перетасовке" - рекомбинации генов. Кроссинговер — важный источник комбинативной генетической изменчивости.
Чем дальше друг от друга расположены гены в хромосоме, тем выше вероятность перекреста между ними и тем больший процент гамет с рекомбинированными генами, а следовательно, и больший процент особей, отличных от родителей. Т. Морган и его сотрудники показали, что, изучив явление сцепления и перекреста, можно построить карты хромосом с нанесенным на них порядком расположения генов. Карты, построенные на этом принципе, созданы для многих генетически хорошо изученных организмов: человека, дрозофилы, мыши, кукурузы, гороха, пшеницы, дрожжей и др.
Генетическая карта — схема взаимного расположения структурных генов, регуляторных элементов и генетических маркеров, а также относительных расстояний между ними на хромосоме (группе сцепления).
Рисунок 4. Частичная генетическая карта 18 хромосомы человека
Хромосомная теория наследственности
Исследования Томаса Моргана легли в основу сформулированной в 1911 году хромосомной теории наследственности. Её сущность заключается в следующем:
-
основным материальным носителем наследственности являются хромосомы с локализованными в них генами;
-
гены наследственно дискретны, относительно стабильны, но при этом могут мутировать;
-
гены в хромосомах расположены линейно, каждый ген имеет определённое место (локус) в хромосоме;
-
гены, расположенные в одной хромосоме, образуют группу сцепления и наследуются совместно;
-
число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;
-
сцепление генов может нарушаться в результате кроссинговера;
-
частота кроссинговера прямо пропорциональна расстоянию между генами.
Значение этой теории заключается в том, что она дала объяснение законам Менделя, вскрыла цитологические основы наследования признаков и генетические основы теории естественного отбора.
Наследование признаков, сцепленных с полом
Признаки, гены которых находится в половых хромосомах, называется сцепленные с полом. В Y - хромосоме генов почти нет, поэтому если говорят, что признак сцеплен с полом, значит, ген находится в Х – хромосоме. У человека известно около 300 генов, находящихся в Х - хромосоме и вызывающих наследственные болезни. Почти все они рецессивны. Наиболее известны гемофилия, дальтонизм, мускульная дистрофия. Если рецессивный ген болезни сцеплен с Х - хромосомой, то носителем является женщина, а болеют чаще всего мужчины, т.к. у них этот ген находится в одинарной дозе. Доминантных Х - сцепленных заболеваний известно мало, в том числе некоторые формы рахита, нарушение пигментации кожи.
Наследственные заболевания
Определяя формирование фенотипа человека в процессе его развития, наследственность и среда играют определенную роль в развитии порока или заболевания. Вместе с тем, доля участия генетических и средовых факторов варьируется при разных состояниях. Выделяют наследственные и мультифакторные заболевания. В зависимости от степени повреждения генетического материала различают хромосомные и генные заболевания. Развитие этих заболеваний целиком обусловлено дефектностью наследственной программы, а роль среды заключается в модификации фенотипических проявлений болезни. К этой группе относят хромосомные и геномные мутации. Наследственные болезни всегда связаны с мутацией, однако фенотипические проявления последней, степень выраженности у разных особей могут различаться. В одних случаях это обусловлено дозой мутантного аллеля, в других – влиянием окружающей среды.
Мультифакторные заболевания (болезни с наследственной предрасположенностью)
В основном это болезни зрелого и преклонного возраста. Причинами их развития являются факторы окружающей среды, однако степень их реализации зависит от генной конституции организма.
Наиболее частыми наследственными заболеваниями являются следующие.
1. Болезнь Дауна. В основе болезни лежит нерасхождение по 21-й паре хромосом. Кариотип больного содержит 47 хромосом, при этом лишней оказывается хромосома 21.
2. Синдром Патау. В основе синдрома лежит нерасхождение по 13-й паре хромосом. В кариотипе больного наблюдается 47 хромосом с лишней хромосомой 13.
3. Синдром «кошачьего крика». Цитологически у всех больных обнаруживается укорочение приблизительно на треть короткого плеча одного из гомологов хромосомы 5.
4. Синдром Шерешевского – Тернера. В клетках организма больного имеется лишь одна половая хромосома Х.
5. Синдром Клайнфельтера. Больные имеют хромосомную конституцию ХХУ синдрома.