1. Механика Читать 0 мин.

1.10. Механические колебания

Колебания ― это процесс, при котором состояние системы изменяется, повторяясь во времени, и смещаясь то в одну, то в другую сторону относительно состояния равновесия.

Период ― это время, через которое повторяются показатели системы, т. е. система совершает одно полное колебание. Период изменяется в секундах.

Частота ― величина обратная периоду: число полных колебаний за единицу времени. Частота измеряется в герцах [Гц] = [c-1]. Частота равна v = $\frac{1}{T}$ , где

v ― частота [Гц];

T ― период [c].

Если известно, что тело совершает N колебаний за время t, то частоту его колебаний можно определить как v = $\frac{N}{t}$ , где

ν ― частота [Гц];

N ― количество колебаний;

t - время [с].

Для описания колебательных систем, совершающих круговые процессы, удобно использовать круговую (циклическую) частоту. Циклическая частота показывает количество полных колебаний, которые происходят за 2π секунд и равна ω = 2πvили ω = $\frac{2\pi}{T}$ , где

ω ― циклическая частота [рад/с];

ν ― частота [Гц];

T ― период [c].

Гармонические колебания ― колебания, в которых физические величины изменяются по закону синуса или косинуса. Кинематическое уравнение гармонических колебаний имеет вид:

x(t) = Asin(ωt + φ0) или x(t) = Acos(ωt + φ0), где

x ― смещение [м];

t ― время, [с];

A ― амплитуда колебаний [м];

ω ― циклическая частота [рад/с];

φ0 ― начальная фаза колебаний, [рад];

(ωt + φ0) ― полная фаза колебаний [рад].

Смещение (x) ― это отклонение тела от положения равновесия. Смещение также является координатой тела, если отсчитывать ее от положения равновесия.

Амплитуда колебаний (A) ― максимальное отклонение колеблющейся величины от положения равновесия, т. е. максимальное смещение равно амплитуде колебаний xmax = A.

Начальная фаза колебаний (φ0) определяет смещение в начальный момент времени, выраженное в радианах.

Фаза колебаний (φ) или полная фаза колебаний, определяет смещение в данный момент времени, выраженное в радианах. Фаза колебаний равна φ = ωt + φ0, где

φ ― полная фаза колебаний [рад];

φ0 ― начальная фаза колебаний, [рад];

ω ― циклическая частота [рад/с];

t ― время, [с].

Пример анализа гармонических колебаний точки

Рассмотрим гармонические колебания, в которых уравнение движения точки имеет вид x(t) = Asin(ωt), где

x ― смещение [м];

t ― время, [с];

A — амплитуда колебаний [м];

ω ― циклическая частота [рад/с].

Из уравнения x(t) = Asin(ωt) следует, что начального смещения нет (φ0 = 0) и колебания начинаются из положения равновесия. Смещение x достигает максимального значения xmax и равно амплитуде xmax = A, в тот момент, когда модуль синуса равен единице |sin(ωt)| = 1. Когда x = A фаза колебаний равна φ = $\frac{\pi}{2} +2\pi n$ когда x = –A фаза колебаний принимает значения φ = $\frac{3\pi}{2} +2\pi n$ , где n = 0, 1 , 2, … N.

График колебания координаты точки имеет вид:

Определим уравнение и график колебания скорости. Скорость ― это производная координаты по времени: v = xt', где

v ― скорость движения точки [м/с];

x ― координата точки [м];

t ― время, [с].

Так как закон изменения координаты нам известен x(t) = Asin(ωt), скорость движения колеблющейся точки: v = xt' = |Asin(ωt)|'t = Acos(ωt).

Уравнение скорости точки равно v(t) = Acos(ωt), где

v ― скорость движения точки [м/с];

A — амплитуда колебаний [м];

ω ― циклическая частота [рад/с];

t ― время, [с].

Сравнив уравнение v(t) = cos(ωt) с кинематическим уравнением гармонических колебаний, легко заметить, что  ― амплитуда изменения скорости, а ωt ― фаза колебаний скорости. Таким образом, максимальное значение скорости равно vmax = , и оно достигается при | cos(ωt) | = 1, т. е. тогда, когда фаза колебаний скорости равна φ = πn, где n = 0, 1, 2, … N.

График колебания скорости точки имеет вид:

Аналогично определяются уравнение и график колебания ускорения точки, которая движется по гармоническому закону.

Ускорение ― это производная скорости по времени: a = vt', где

a ― ускорение движения точки [м/с2];

v ― скорость движения точки [м/с];

t ― время, [с].

Так как закон изменения скорости был определен выше v(t) = cos(ωt), определим ускорения движения колеблющейся точки: a = vt' = [cos(ωt)]t' = –2sin(ωt).

Уравнение ускорения точки равно a(t) = –2sin(ωt), где

a ― ускорение движения точки [м/с2];

A — амплитуда колебаний [м];

ω ― циклическая частота [рад/с];

t ― время, [с].

Модуль ускорения точки максимален, когда |sin(ωt)| = 1 ― тогда же, когда достигает максимума смещение точки. Максимальное ускорение, т. е. амплитуда ускорения точки равна amax = 2.

График колебания ускорения точки имеет вид:

Во время гармонических колебаний, формы энергии колебательной системы все время находятся в процессе взаимной трансформации. В механической колебательной системе преобразуется механическая энергия: потенциальная энергия ― в кинетическую, а затем кинетическая энергия ― вновь в потенциальную. Полная механическая энергия колеблющейся системы постоянна, и в любой момент времени справедлив закон сохранения энергии E =  + EK, где

E ― полная механическая энергия системы, E = const, [Дж];

 ― потенциальная энергия системы, изменяющаяся во времени, [Дж];

EK ― кинетическая энергия системы, изменяющаяся во времени, [Дж].

Рассмотрим изменение потенциальной энергии пружинного маятника, который колеблется по гармоническому уравнению x(t) = Asin(ωt).

Потенциальная энергия деформированной пружины равна  = $\frac{kx^2}{2}$ , где

 ― потенциальная энергия деформированной пружины, [Дж];

k ― коэффициент упругости пружины [Н/м];

x ― деформация пружины (величина ее удлинения или сжатия) [м].

У пружинного маятника деформация пружины ― переменная величина, которая зависит от времени. Кинематическое уравнение движения точки, принадлежащей этому маятнику ― x(t) = Asin(ωt). Следовательно, потенциальную энергию пружинного маятника можно записать как  = $\frac{k(x(t))^2}{2}$ = $\frac{k(A\sin(\omega t))^2}{2}$ = $\frac{k}{2} \cdot A^2 \sin^2 (\omega t)$ .

Уравнение потенциальной энергии пружинного маятника  = $\frac{k}{2} \cdot A^2 \sin^2 (\omega t)$ , где

 ― потенциальная энергия пружинного маятника, [Дж];

k ― коэффициент упругости пружины [Н/м];

A — амплитуда колебаний [м];

ω ― циклическая частота [рад/с];

t ― время, [с].

Амплитуда потенциальной энергии пружинного маятника равна EПmax = $\frac{k}{2}A^2$ , где

EПmax ― максимальная потенциальная энергия пружинного маятника, [Дж];

k ― коэффициент упругости пружины [Н/м];

A — амплитуда колебаний [м].

Потенциальная энергия пружинного маятника равна нулю, когда sin(ωt) = 0 ― когда маятник проходит положение равновесия, и максимальна, когда sin(ωt) = 1 ― когда маятник находится в крайних положениях, т. е. когда его смещение равно амплитуде.

График колебаний потенциальной энергии пружинного маятника:

Рассмотрим изменение кинетической энергии маятника. Кинетическая энергия тела равна  = $\frac{mv^2}{2}$ , где

 ― кинетическая энергия тела, [Дж];

m ― масса тела, [кг];

v ― скорость движения тела, [м/с].

У тела, которое совершает колебательные движения, скорость ― переменная величина.

Выше было показано, что если уравнение движения точки имеет вид x(t) = Asin(ωt), то уравнение скорости точки v(t) = cos(ωt). Таким образом, кинетическая энергия маятника равна  = $\frac{m(v(t))^2}{2}$ = $\frac{m}{2} \cdot (A\omega\cos(\omega t))^2$ = $\frac{m}{2} \cdot A^2 \omega^2 \cos^2 (\omega t)$ .

Уравнение кинетической энергии маятника  = $\frac{m}{2} \cdot A^2 \omega^2 \cos^2 (\omega t)$ , где

 ― кинетическая энергия маятника, [Дж];

m ― масса тела, [кг];

A — амплитуда колебаний [м];

ω ― циклическая частота [рад/с];

t ― время, [с].

Амплитуда кинетической энергии маятника равна EКmax = $\frac{m}{2} \cdot A^2 \omega^2$ , где

EКmax ― максимальная кинетическая энергия маятника, [Дж];

m ― масса тела, [кг];

A — амплитуда колебаний [м];

ω ― циклическая частота [рад/с].

Максимальная кинетическая энергия маятника достигается тогда, когда cos2(ωt) = 1 ― маятник проходит положение равновесия, и она равна нулю, когда маятник находится в крайнем положении.

График колебаний кинетической энергии маятника:

Математический маятник ― это колебательная система, состоящая из материальной точки, подвешенной на нерастяжимой нити или стержне.

Период колебаний математического маятника равен T = $2\pi \sqrt{\frac{l}{g}}$ , где

T ― период колебаний [с];

l ― длина нити математического маятника [м];

g ― ускорение свободного падения [м/с2].

Период колебаний пружинного маятника равен T = $2\pi \sqrt{\frac{m}{k}}$ , где

T ― период колебаний [с];

m ― масса груза [кг];

k ― жесткость пружины [Н/м].

Существует особый тип колебаний ― вынужденные колебания. Вынужденные колебания происходят только под постоянным периодическим внешним воздействием и их характеристики зависят от характеристик этого воздействия.

Если частота внешнего воздействия, которое вызывает вынужденные колебания, совпадает с собственной внутренней частотой колебательной системы ― возникает явление резонанса. При резонансе резко возрастает амплитуда колебаний системы. Частота, при которой возникает явление резонанса, называется резонансной частотой.

На рисунке показан график резонансной кривой ― увеличение амплитуды при совпадении частоты внешнего воздействия с внутренней частотой системы.

Прочитано Отметь, если полностью прочитал текст
Ништяк!

Решено верно

Браво!

Решено верно

Крутяк!

Решено верно

Зачёт!

Решено верно

Чётко!

Решено верно

Бомбезно!

Решено верно

Огонь!

Решено верно

Юхууу!

Решено верно

Отпад!

Решено верно

Шикарно!

Решено верно

Блестяще!

Решено верно

Волшебно!

Решено верно