Оглавление
11. Теоретические основы в химии
11.8. Строение электронных оболочек 11.73. Строение электронных оболочек 11.114. Изменения свойств в таблице Менделеева 11.145. Изменения свойств в таблице Менделеева 11.159. Типы химической связи 11.203. Типы химической связи 11.235. Степень окисления и валентность 11.290. Степень окисления и валентность 11.321. Типы кристаллических решёток 11.335. Типы кристаллических решёток 11.379. Электролитическая диссоциация и реакции ионного обмена 11.406. Электролитическая диссоциация и реакции ионного обмена 11.414. Окислительно-восстановительные реакции – базовый уровень сложности 11.434. Окислительно-восстановительные реакции – базовый уровень сложности 11.455. Окислительно-восстановительные реакции и реакции ионного обмена 11.478. Окислительно-восстановительные реакции и реакции ионного обмена 11.520. Скорость химической реакции 11.522. Скорость химической реакции 11.538. Химическое равновесие 11.545. Химическое равновесие 11.576. Гидролиз и среда водных растворов 11.580. Гидролиз и среда водных растворов 11.591. Электролиз 11.592. Электролиз

Прочитано 0%
39. Органическая химия
39.17. Классификация и номенклатура органических веществ 39.37. Классификация и номенклатура органических веществ 39.111. Гомология и гибридизация 39.135. Гомология и гибридизация 39.190. Углеводороды – алканы, алкены, циклоалканы 39.221. Углеводороды – алканы, алкены, циклоалканы 39.259. Углеводороды – алкины, алкадиены, ароматические соединения (арены) 39.284. Углеводороды – алкины, алкадиены, ароматические соединения (арены) 39.319. Альдегиды, карбоновые кислоты, сложные эфиры 39.330. Альдегиды, карбоновые кислоты, сложные эфиры 39.365. Способы получения кислородсодержащих органических соединений 39.397. Способы получения кислородсодержащих органических соединений 39.422. Амины и аминокислоты 39.436. Амины и аминокислоты 39.452. Белки, жиры и углеводы 39.487. Белки, жиры и углеводы 39.521. Критерии и идеальные ответы задания №33 39.527. Механизмы реакций в органической химии 39.553. Механизмы реакций в органической химии 39.558. Способы получения углеводородов 39.559. Способы получения углеводородов

Прочитано 0%

11. Теоретические основы в химии Читать 0 мин.

11.235. Степень окисления и валентность

Степень окисления ― это условный заряд атома в молекуле, вычисленный в предположении, что молекула состоит из ионов и в целом электронейтральна.

Существуют следующие правила для определения степеней окисления (СО):

  1. CO любого элемента в простом веществе (Н2, Al, S) равна 0.
  2. Сумма всех CO атомов в молекуле равна 0.
  3. Наиболее электроотрицательные элементы в соединении имеют отрицательные CO, а атомы элементов с меньшей электроотрицательностью ― положительные.

Например, азот более электроотрицательный, чем водород, поэтому он имеет заряд –3, а водород +1. В молекуле три атома водорода, каждый дает заряд +1, а в сумме +3, молекула сама нейтральна, заряд = 0.

4. Максимальная CO любого элемента равна номеру группы (исключения: медь, серебро, золото, фтор, кислород), а минимальная отрицательная равна N – 8, где N ― номер группы.

Некоторые элементы имеют постоянные CO, их нужно знать, они помогут вычислить СО других элементов, имеющих несколько значений СО.

  • щелочных металлов +1;
  • Mg, Be и щелочноземельных металлов +2;
  • алюминия +3;
  • фтора –1;
  • водорода +1 (кроме гидридов NaH, CaH2 и др., где степень окисления водорода ―1);
  • кислорода –2 (кроме OF2 и пероксидов, содержащих группу –O–O–, в которой степень окисления кислорода ―1).

Пример расчета степеней окисления в сложной молекуле (серная кислота):

 

Изображаем структурную формулу молекулы, черточка ― это связь, пара электронов.

Из черточки рисуем стрелку, направленную к более ЭО атому. Эта стрелка символизирует переход электрона к атому. Если связаны два одинаковых атома, оставляем черту как есть ― нет перехода электронов.

У кислрода и водорода известные степени окисления: у кислорода -2, у водорода +1. Степень окисления серы принимаем за X.

Составляем уравнение (складываем все степени окисления и приравниваем к 0, так как молекула является нейтральной)

+1 + (+1) + (-2) + (-2) + (-2) + (-2) + Х = 0

X = +6

Валентность ― способность атомов образовывать определенное количество связей с другими атомами.

Валентные возможности атомов определяются:

  • числом неспаренных электронов (одноэлектронных орбиталей);
  • наличием свободных орбиталей;
  • наличием неподеленных пар электронов.

Если нарисовать структурную формулу и посчитать количество черточек (связей) мы узнаем валентность.

Для примера разберем молекулу серной кислоты:

Взаимосвязь между высшей валентностью элемента и числом неспаренных электронов.

№ группы

I

II

III

IV

V

VI

VII

I

II

III

IV

V

VI

VII

Элементы

Li

Be

B

C

N

O

F

Na

Mg

Al

Si

P

S

Cl

Число неспаренных

электронов в основном

состоянии

1

0

1

2

3

2

1

1

0

1

2

3

2

1

Число неспаренных

электронов в возбужденном

состоянии

-

2

3

4

-

-

-

-

2

3

4

5

4

6

3

5

7

Высшая валентность

I

II

III

IV

III

II

I

I

II

III

IV

V

IV

VII


Рассмотрим атом серы, какие валентности он может иметь.

Для атома серы переход в возбужденное состояние возможен. В процессе возбуждения электроны атома серы переходят с 3s- и 3p-подуровней на свободные орбитали 3d-подуровня:

В возбужденных состояниях (обозначаются символом элемента со звездочкой) валентность серы равна IV и VI.

Прочитано Отметь, если полностью прочитал текст
Ништяк!

Решено верно

Браво!

Решено верно

Крутяк!

Решено верно

Зачёт!

Решено верно

Чётко!

Решено верно

Бомбезно!

Решено верно

Огонь!

Решено верно

Юхууу!

Решено верно

Отпад!

Решено верно

Шикарно!

Решено верно

Блестяще!

Решено верно

Волшебно!

Решено верно